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Abstract. We find some non-Fock representations of the canonical anticommutation 
relations in 1 + 1 dimensions. These representations, obtained by a Bogoliubov transforma- 
tion of the Fock annihilation and creation operators, are Poincart covariant, have positive 
energy, and are labelled by two conserved charges which take on continuous values in 
the interval [0,27r). 

1. Introduction 

The algebraic approach to quantum field theory has been motivated by the difficulties 
of the standard physicists’ techniques, for example with descriptions of say interacting 
fields or spontaneous symmetry breaking. According to the ideas of Haag and Kastler 
(1964) and Segal (1965; Bongaarts 1972), we should associate our various physical 
measurements with elements of an abstract C*-algebra and then study the various 
representations of this algebra. For infinite-dimensional systems, i.e. quantum field 
theory, it is easy to show that there exist infinitely many unitarily inequivalent 
irreducible representations of our chosen algebra, all capable of describing a different 
‘physics’. Many of these representations, however, will not be physical in the sense 
of not existing in nature; indeed, to choose those of real interest, we should insist 
that they satisfy at least two basic conditions. 

(a) The representations must be covariant under the action of the restricted 
PoincarC group ST, i.e. the representations must carry a strongly continuous unitary 
representation of 91. 

(b) The representations must have positive energy, i.e. the generator of time 
translations must be a positive semi-definite operator on the representation space. 
The various unitarily inequivalent physical representations may be labelled by their 
unitary invariants, i.e. their ‘charges’. Superselection rules then operate between 
these representations: the fields intertwining these representations are supposed 
unobservable. 

In this work we study representations of the canonical anticommutation relations 
over the space of solutions to the massless Dirac equation in 1+1 dimensions, 
obtainable by a gauge transformation (of the second kind) in the fermion field 
representation, show the existence of superselection sectors, and that the representa- 
tions obtained obey the above criteria. The representations we find are irreducible 
and quasi-free, and therefore belong to the class of covariant representations classified 
by Kraus and Streater (1981). Our examples are local in space-time, in the sense 
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that they are strictly localised in the sense of Knight (1961). They are thus more in 
the spirit of Haag and Kastler than the examples of Kraus and Streater, which are 
localised in momentum space. 

We follow Segal's formulation for a fermion quantum field theory: let X be a 
(one-particle) real Hilbert space and S ( f ,  g)  the scalar product in X. Let R : X +  '?lo 
be a real-linear injection into the abstract complex algebra %o, generated by R (X), 
such that 

[R(f) ,  R(g)l+ =R( f jR(g )+R(g)R( f )  =S(f, g)'J 
where U is the identity in ?Io. Let * be an involution in ?Io such that the R ( f )  are all 
self-adjoint, and furnish ?Io with the (unique) norm such that the completion B of Bo 
in this norm is a C*-algebra: the Clifford algebra over (X, S). 

A representation of the canonical anticommutation relations is a real-linear 
*-homomorphism from a into the set of all bounded operators acting on some Hilbert 
space %-known as the representation space. We seek the existence of a vacuum 
(Fock) representation, which apart from satisfying the conditions of PoincarC covari- 
ance and positivity of energy, should contain the PoincarC invariant cyclic vector 
0-the vacuum. 

Symmetries are introduced into the theory as *-automorphisms of the algebra; as 
in Kraus and Streater (1981) we limit our study to those induced by the one-particle 
transformations R (f) + R (Vf), where V is a real orthogonal operator on X. V need 
not be unitary, though; this possibility may lead us to a non-spatial automorphism 
and hence enable us to construct examples of non-Fock representations starting from 
the vacuum representation. The dynamics of these representations will be completely 
determined by the dynamics of the vacuum representation: if 7r is the time evolution 
automorphism, then the 'time evolution' of an automorphism U is given by T~ a U - 7;'. 

To make X into a complex Hilbert space we have to introduce a complex structure 
J, such that when we multiply f~ X by a complex number a + ib, we get 

(a  + ib)f = af + bJf, 

Given a complex structure J we may define a new scalar product ( - ,  .): 

( f ,g)=S(f ,g)+iS(Jf ,g)  

which makes X into a complex Hilbert space. The Fock representation of is defined 
relative to a J.  For example, let X be the complex Hilbert space of square integrable 
functions on the real line, complete with respect to the inner product 

U, g> = J dxf(x)g(x). 

Then S(f, g)  = Re(f, g). X carries the complex structure J = i, and we define the field 
representation in terms of its annihilation and creation operators, 4(f), 4*(f), with 
respect to this complex structure: let 

4(f) = (1/J2)(R(f)+iR(if))  4*(f) = (1/./T)(R (f) - iR (if)). 

These operators act on the 'field space', given by 

=6=oXo(Xoo),o(~'X'X)*o., . 
' X o o X l o X 2 o X ~ o .  . * 
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such that 
4*(f):Vfl(f1, * * . , f n ) ' * f l + l ( f , f l , . . . , f f l )  

cL(f): *fl(fl, .  . * , f f l )+C (-1)f(fIlf)*fl-l(f19 * * .  , f 7 1 * .  7 f f l )  

I 

4 ( f W 0  = 0 
where qfl E Xfl ,  etc, and Vo E Q= is the normalised cyclic vector for this representation, 
which we call the field representation. 

To introduce time evolution, we make the functions f E X time dependent, accord- 
ing to the massless Dirac equation; X is then the Hilbert space of functions for which 

f ( t ,  x )  = elHlf(O, x )  = eiHlf(x) 

is also square integrable in x, where H = -iy5a/ax, and ys = yoyl. We choose the 
y-matrix representation 

Y o = [ 1  0 1  0]  Y1'/ -;I. 
H ,  the generator of time translations, is then self-adjoint on (X ,  ( I  , .)); however, it is 
not bounded below. The field representation is not a physical representation therefore, 
though it is PoincarC covariant (Streater and Wightman 1978): for each (a ,  A) E St, 
where 

1 coshh sinhA 
sinhh coshh 

a = ( a o , a ' )  A ( A ) = [  

the action of the PoincarC automorphism T ( ~ , . ~ )  is given by 

7 ( a , ~ ) :  $(f) + e x ~ ( i r d / 2 ) 4 ( f ~ ~ , ~ J  
and 

f ( R , l \ ) ( f , ~ ) = f [ A - l ( f - a O , x  - a ' ) ] .  

We now wish to find the physical vacuum representation of this theory. As we 
have seen, the natural complex structure in X is not suitable for its definition, as the 
Hamiltonian is not bounded below. We can, however, split it up uniquely into positive 
and negative parts: there exist orthogonal projections P + ,  P-, such that 

HP+ = P+H = H +  3 0  H P - =  P-H = H-sO.  

Let J = i(P+ - P - )  be a new complex structure in X; the new inner product will be 

(f, g ) J  = SCf, g) + iS(f, g )  = Rdf ,  g )  + i  Im((P+ - P - ) f ,  g) .  

As H commutes with J, the action of the time evolution operator U ( t )  = elH' will 
again be unitary on X, with respect to the new scalar product ( 9 ,  . ),. We could write 

where 
u(t) = eJrir 

- 
H = - J i l l  = (Pi. - P - ) H  = H +  - H -  3 0  

i.e. U ( t )  has a positive generator with respect to the new Hilbert space structure. We 
may define new annihilation and creation operators with respect to J :  let 

a ( f ) =  (1/./%R(f)+iR(Jf)) a * ( f ) = ( 1 / . / / 2 ) ( R ( f ) - i R ( J f ) ) .  
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These annihilation and creation operators belong to the vacuum representation, which 
is certainly PoincarC covariant, and as shown above, has positive energy. Finally we 
express the fermion field in terms of these operators: 

4(f) = a(P+f)+a*(P-f). 

As P+, P- are unique orthogonal projections, the one-particle Hilbert space X divides 
itself naturally into two components: 

X +  = I f €  X ,  P+f z 0) X-={fEX,P-f  ZO}. 

X+, X -  are usually referred to as the (one) particle and (one) antiparticle spaces 
respectively. In particular, a (P+f), a *(P-f) are the particle annihilation and anti- 
particle creation operators. 

2. Gauge transformations and the new representations 

Consider the action of the operator V ( a )  on the field representation space given by 

V ( Q  ): 9" (fl, . . . , f n )  + 9, (e'"f1, . . . , eiafn) 

where a is real. The automorphism of the algebra VI which this induces is known as 
a gauge transformation, and a may be a function of the (space) point x .  Though this 
action is unitary in the field representation, it need not necessarily be so in the vacuum 
representation if we make a (x) a suitable function. Streater and Wilde (1970; Bonnard 
and Streater 1977) found examples of non-Fock representations of the canonical 
commutation relations, obtainable by a related automorphism, by choosing a (x) in 
the form of a smooth step function, i.e. a E C"(R), and da/dx E C? (R). Following 
their lead, let a(x), a s ( x )  be of the form above, and consider the set G of automorphisms, 
C T ~ , ~ ~  of VI, defined at time zero by its one-particle action 

ra,a5: 4(f) --* V*(Q + r5~5)W) V ( Q  + ~ 5 ~ 5 )  = 4Iexp[i(a + y5a5)lf) 

where V* is the inverse of V. G forms a group with multiplication rule 

maa,a, * fl5.85 = U ( a + ~ ) . ( a 5 + ~ 5 ) 4  

To simplify calculation, we shall consider the group GO = G/(U( 1) x U( l)), i.e. the 
group of automorphisms isomorphic to those for which Q (-CO) = ( ~ ~ ( - 0 0 )  = 0. 

In the physical vacuum representation, the action of GO will cause the mixture of 
particle annihilation and antiparticle creation operators, and vice versa; in terms of 
Fourier transforms (denoted by *) 

J*{exp[i(a +y5ag)l * jJ=a*{~+ exp[i(a + y 5 ~ 5 ) 1  * f i+a** {~-  exp[i(cy + y 5 a 5 ) l * j )  

where the * denotes convolution, so the automorphism C T , , , ~  induces the Bogoliubov 
transformation 

a* (p + f) + a* ( v++h + a* * ( v- + f) 

v,,,f=P,(exp[i(a + Y s a d l  * ~ , f f )  

a* *(E[)  + a* * ( v- - f) + a* ( V+J)  
where - 
and E ,  E '  = + or -. A necessary and sufficient condition (Berezin 1966, Ruijsenaars 
1977) for this transformation to be implemented by means of unitary operators in 
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Fock space is if the off-diagonal parts, i.e. V-+ and V+-, belong to the class of 
Hilbert-Schmidt kernels of operators on X. 

We have chosen to work with Fourier transforms since P+,P- .  then take on a 
particularly simple form: 

Then 

so the kernel 

To determine the Hilbert-Schmidt norms of V-+, V+-, we note that the functions 
exp[i(a fa5)]  are C", equal to 1 to the left of some point, and equal to a constant 
exp[i(a(co)*a5(~))]=h to the right of another point. We may therefore write either 
one as exp[i(a f as) ]  = 1 +{lm (L dx where (L E La, and ( L ( x )  dx = h - 1 = 

The projection P- commutes with the unit operator, and so P+lP-=O. The 
Fourier transform of ITm J / ( x )  dx is $ ( p ) / ( p  +is). Hence U = (V+-)ll  has kernel 
@ ( - p ) [ $ ( p  - q ) / ( p  -4  +is)]@(q).  The Hilbert-Schmidt norm of this is 

(2 I7 ) 1'2J(o). 

pu t s  = p  -4,  t = p  +q,  to get 

Now (LEY; this integral is finite if and only if &O) =0,  i.e. h = 1, giving 
a ( 0 0 ) + a 5 ( ~ ) = 2 7 r n .  Similarly the norm of (V-+)22  is finite if and only if 
a (00)-a~(co)=217m. Summarising this result: 

Theorem 1. Let un,n5: $( f )  + +{exp[i(a + ysa5)]f) be a gauge transformation of the 
massless fermion field operator where a ( x ) ,  a 5 ( x )  are C" functions with first deriva- 
tives of compact support. Then the automorphism of the fermion algebra generated 
by this transformation is unitarily implementable in the physical vacuum representation 
if and only if 

a(0O)+as(OD) =a(-oo)+a5(-0O) 

a (00) - a 5 (00) = a (-00) - a 5 (  -00) 
]modulo 217. 

The non-unitarily implementable gauge transformations {un,ns: a (00) a5(00) # 0, 
modulo 217) give rise to inequivalent representations 1 7 ~ , ~ ~ ( ? l )  = 1 7 ~  of the 
canonical anticommutation relations, with creation and annihilation operators 
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aU,,, * ( f ) ,  aa,a5(f)  given by the Bogoliubov transformation. Note that the non- 
implementability of these automorphisms was dependent only on the value of the 
functions a f a s  at x = cc), but not on their particular form. This suggests that two 
different sets of functions a, as; p, p5 will give us unitarily equivalent representations 
if they have the same behaviour at infinity, modulo 2 ~ .  This is indeed the case. 

Theorem 2. Let U,,,,: 4 ( f )  +4{exp[i(a + r5~)1f), UB,P,: 4 ( f )  + 4Iexp[i(p + v~pdlf), 
be two gauge transformations of the free fermion field, where a, as; p, p5 are functions 
of the form discussed above; then the two representations T, ,~ , (W = T O  . mu,u5(tl) ;  
T@,B,(%) = ro * u ~ , ~ ~ ( % ) ,  where tro is the physical vacuum representation, are unitarily 
equivalent if and only if 

Proof, T,,,,(%), T ~ , ~ , ( % )  will be equivalent if and only if there exists a unitary operator 
U, say, such that for all A E a, 

~T,,,,(A) = UTP,~ , (A)U-*  
i.e. if 

T O  mm,as(A) = U(TO mp,p,(A))U-l 
i.e. 

T O  * ma,as * mp,iS(A) = U T ~ ( A ) U - '  

that is, if and only if CT,,,~ m&, is unitarily implementable in Fock representations, 
T O .  Now (up to a phase) 

(U,,,,, - a&,$)(f) = $Iexp[i(a + rm)I exp[--i(~ + r 5 ~ 5 ) I f )  

= $Uexp(i[a - p  + ~ 5 ( a ~ - P ~ ) I ) f l l .  

However, by theorem 1, this transformation will be unitary if and only if 

~ ( ~ ) - P ( 0 0 ) + ~ 5 ( 0 0 ) - - 5 ( 0 0 ) = 0  modulo 2T,  
a ( ~ ) - - p ( ~ ) - ( a s ( ~ ) - P s ( ~ ) )  = 0 I 

We see that the representations divide themselves up into equivalence classes 
labelled by their unitary invariants, the charges 

In particular, the equivalence class of the physical vacuum representation has charges 
a + = a - = 0. 

3. Poincare covariance and positivity of the energy 

We have made our one-particle space X time dependent in the sense that each f~ X 
is a solution to the massless Dirac equation: -idf = 0. Every f EX is therefore a 
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spinor whose upper component is right moving, and lower left moving: at any time t, 

The upper and lower components of the gauge transformed field 4{exp[i(a + ysas)]f) 
will evolve in time in the same way, i.e. 

where a 1(x) = a (x) + a5(x), a2(x) = a (x) - a5(x).  Under a PoincarC transformation 
(a, A) E 91 

x - t + e-A[x -a1 - ( t  -ao) ]  x + t + e A ( x  -a '+ t -ao) .  

To show that the representations obtained are PoincarC covariant we must first show 
that vaVa5 and 7(a,,%) * (T,,~~ define unitarily equivalent representations of the type 
concerned, and then that the action of the automorphism is strongly continuous in 
the representation space. By the same arguments as in the proof of theorem 2, the 
first part is equivalent to showing that LT,,,~ 7 ( a . A j  ua,a5 is unitarily implementable 
in the physical vacuum representation. This is the map 

-i  

4(f) + exp(iy5A/W{exp[i(a + ysas)l(exp[-i(a + ysa5)1f)ca. d. 
Now 

exp[i(a + ~ 5 4 l ( e x p [ i ( a  + ~ 5 a s ) l f ) ~  

I) = exp(i[ a l (x  - t )  -al[e-A(x - a 1  - ( t  -a0)] 0 
0 a2(x +t)-az[eA(x - a ' + t - a O ) ]  

x f~a,.n,(t,  x 1. 
This transformation is unitarily implementable in the physical vacuum representation, 
for in the limit x + 00 

a l(x - t )  -al{e-A[x -a - ( t  -ao)])+ o a l (x  +t)-a2[eA(x - u ' + t - u O ) ] + ~  

so fulfilling the conditions of theorem 1, and the map f+ f(a.Ai is certainly unitary as 
the physical vacuum representation is covariant. Moreover, as al, az are both C" 
functions, the action of 7 ( a , A )  will be strongly continuous in the representation space 
associated with T ~ + , ~ - ,  since continuous actions on the one-particle space induce 
(norm)-continuous actions on $?l (Kraus and Streater 1981). We have now proved 
theorem 3. 

Theorem 3. The representations ~ ~ , , ~ - ( $ ? l )  defined as above are Poincare covariant. 

Theorem 4. The representations so defined have positive energy. 
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Proof. To prove that the energy, H', is bounded below we write it as a Wick-ordered 
creation-annihilation form, and apply the method of Glimm (1967). 

with the Wick ordering being in the physical vacuum state, and 4 ( x )  being in the 
relativistic vacuum representation of the field. Now 

where a ( p ) ,  b *(-p) are the particle annihilation and antiparticle creation operators 
respectively. From this we see that 

The first term is of course bounded below as it is the energy of the vacuum representa- 
tion. We consider the second term, the energy of the right-going waves; the third 
term, the energy of the left-going waves, is treated similarly. 

Let a l ( x ) = a ( x ) + a s ( x ) ;  then 

h =I dp d q e ( p ) e ( q ) [ ~ ( p - q ) a * ( p ) a ( q ) + a ; ( p  +q)a*(p)b*(q) 
A 

+ ff '1 ( - P  - q)b(p)a (9) - 2 ( - P  +4)b*(q)b (P)l .  

In the infrared region, say 0 s p  s K ,  the four kernels of these operators (call a typical 
one I )  obey 1) IpI-"2r112 < 00, 0 C T < 1. The four operators represented by the integrals 
over 0 s p  s K are therefore infinitely small relative to the free energy (Glimm 1967, 
theorem 2.4.3). The vacuum polarisation terms have kernels of the Hilbert-Schmidt 
class over K s p  s 00, since 
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Therefore they are infinitely small relative to the number operator (Glimm 1967, 
corollary to theorem 2.4.2) and therefore to H if K > 1. The remaining terms 

are second quantisations of the (bounded) multiplication operators a \ ( * x )  with the 
projection operators 8(p  - K ) ,  8(q ) ,  and so have normssup,  la’(x)l = M ,  say. If 
K > 4M, this term is dominated by ;If, i.e. ;H + A  5 0. Collecting these results we 
see that H’ is bounded below. 

4. Final remarks 

It will be shown in a further paper (Gallone et a1 1983) that the equal-time currents 
j ”  = &y”$ and is” = $y5y”$ make sense in the representations 7ra,a5 when smeared 
with test functions p, ps in 9(88). They are the generators, respectively, of the local 
gauge transformations eia and exp(iy5a ’). Whereas these automorphisms commute, 
io and j s O  do not commute, but satisfy the canonical commutation relations. The 
abelian gauge group is thus represented by a Weyl system. The representation of this 
Weyl system in 7ra,a5 is unitarily equivalent to the charge (&(CO) ,  as(OO)) representation 
of the free boson field (Streater and Wilde 1970), when the former is restricted to 
the cyclic space generated from the transformed vacuum state. Moreover, the rep- 
resentations of the canonical commutation relations are inequivalent even when the 
charges are equivalent, modulo 27r. This is possible because the currents are reducibly 
represented in the Hilbert space of the canonical anticommutation relations, so one 
representation can contain many inequivalent Weyl systems. For more details, see 
Gallone et ul (1983). 

Acknowledgments 

We would like to thank Dr K Ito for helpful calculations at an early stage of this 
work and F Gallone and A Sparzani for pointing out some errors in a previous version. 

References 

Berezin F A 1966 The Method of Second Quantization (London: Academic) p 119 
Bongaarts P J M 1972 Linear Fields According to I E Segal in Mathematics of Contemporary Physics ed 

Bonnard J L and Streater R F 1977 Helv. Phys. Acta 49 259-67 
Gallone F, Sparzani A and Streater R F 1983 to appear 
Glimm J 1967 Commun. Math. Phys. 5 343-86; 6 61-76 
Haag R and Kastler D 1964 J. Math. Phys. 5 848-61 
Knight J M 1961 J. Math. Phys. 2 459-71 
Kraus K and Streater R F 1981 J.  Phys. A:  Math. Gen. 14 2467-78 
Ruijsenaars S N M 1977 J.  Math. Phys. 18 517-26 

R F Streater (London: Academic) 



2810 Z J Hermaszewski and R F Streater 

Segal I E 1965 Mathematical Problems of Relativistic Physics (Providence: Am. Math. Soc.) 
Streater R F and Wightman A S 1978 PCT, Spin and Statistics, and All That (New York: Benjamin- 

Streater R F and Wilde I F 1970 Nucl. Phys. B 24 561-75 
Cummings) p 18 


